Application of Combinatorial Chemistry to Industrial Material Problems

James N. Cawse
Staff Scientist
Combinatorial Chemistry Program
GE Corporate R&D
Schenectady, NY

Combinatorial Chemistry for Industrial Problems

- Where are the opportunities?
- What are the benefits?
- What are the high risk technical challenges?
- How can the ATP make a difference?

Opportunities & Benefits: Catalysts

- Impacted Products
 - Industrial chemicals
 - Engineering plastics

- Technical Challenges
 - High pressure
 - High temperature
 - Catalyst kinetics

- Economic Benefits
 - Cost reduction
 - Capital outlay Reduction
 - Speed to market
 - New products

- Economic Arena
 - \$375B Chemical industry
 - \$10B Catalyst industry
 - \$12B Chemical R&D

Opportunities & Benefits: Polymers

- Impacted Products
 - Engineering plastics
 - Commodity plastics
 - Plastics products

- Technical Challenges
 - Process dependent properties
 - Properties defined in macro terms
 - Scaleup issues

- Economic Benefits
 - Cost reduction
 - New products
 - New markets

- Economic Arena
 - \$38B plastics industry
 - \$1.5B polymer R&D

Opportunities & Benefits: Phosphors

- Impacted Products
 - Domestic lighting
 - Automobile lighting
 - Electronic displays

- Technical Challenges
 - No theoretical guidance
 - Multispectral analysis

- Economic Benefits
 - Decreased energy consumption
 - Decreased greenhouse gases
 - Improved color rendition

- Economic Arena
 - Lighting consumes 25% of US electrical energy
 - Phosphor cost major fraction of fluorescent lamp cost

What's Already Available?

- Ideas
 - Massively parallel experimentation
 - Miniaturization of reactions and sensors
 - "Factory" organization of combinatorial experimentation
- Hardware and Software
 - Robotics
 - Analytical instruments
 - Chemical information management
 - Commercially available libraries of chemicals

(Stuff we can steal from Pharmaceutical research!)

Challenges: Technique Development

High Risk Technical Challenges

Reaction Screening

Issues

- Heat
- Electrochemical
- Pressure
- Gas/Liquid Transport
- Mixing

Tools

- Microreactors
- High temperature furnaces
- Vapor transport tubes
- Autoclaves
- Microextruder

Evaluation

Issues

- •Detection of chemical changes at reaction conditions
- •Polymer property determination at micro scale

Tools

- GC, MS, LC, IR, UV...
- Fiber Optic Sensors...

High Risk Technical Challenges

Issues

- Reactor miniaturization
- Sampling
- Scaleup
- Multiple reactor types
- Detection

Reactors

- Continuous Flow
- High Pressure
- High Temperature
- Tubular
- Back-Mixed
- Heterogeneous
- Extruders

Sensors

- Continuous
- Within the vessel
- Chemical properties
- Physical properties
- Surface properties
- Optical properties
- Mechanical properties

High Risk Technical Challenges: the Industrial Environment

Technical Issues to be Tackled with ATP Support

- Miniaturization of reaction, processing, and testing apparatus
- Clear understanding of "scalability"
- Generally useful high throughput synthetic or fabrication methods
- Generally useful high throughput measurement and screening technology

The ATP Opportunity

- Jump start combinatorial infrastructure
 - Develop versatile combinatorial technology
 - Reduce capital intensity of combinatorial systems
- Reduce the barriers to entry
 - Achieve and publicize industrial combinatorial successes
 - Reduce cultural barriers to changing from "solo inventor" to "research factory"

Meet the global technical challenge